Search results for "Lie derivative"

showing 3 items of 3 documents

Existence and uniqueness of solutions to superdifferential equations

1993

Abstract We state and prove the theorem of existence and uniqueness of solutions to ordinary superdifferential equations on supermanifolds. It is shown that any supervector field, X = X0 + X1, has a unique integral flow, Г: R 1¦1 x (M, AM) → (M, AM), satisfying a given initial condition. A necessary and sufficient condition for this integral flow to yield an R 1¦1-action is obtained: the homogeneous components, X0, and, X1, of the given field must define a Lie superalgebra of dimension (1, 1). The supergroup structure on R 1¦1, however, has to be specified: there are three non-isomorphic Lie supergroup structures on R 1¦1, all of which have addition as the group operation in the underlying …

Flow (mathematics)Simple Lie groupMathematical analysisLie bracket of vector fieldsAdjoint representationGeneral Physics and AstronomyLie groupLie derivativeLie superalgebraGeometry and TopologySupergroupMathematical PhysicsMathematicsJournal of Geometry and Physics
researchProduct

Lie algebra on the transverse bundle of a decreasing family of foliations

2010

Abstract J. Lehmann-Lejeune in [J. Lehmann-Lejeune, Cohomologies sur le fibre transverse a un feuilletage, C.R.A.S. Paris 295 (1982), 495–498] defined on the transverse bundle V to a foliation on a manifold M, a zero-deformable structure J such that J 2 = 0 and for every pair of vector fields X , Y on M: [ J X , J Y ] − J [ J X , Y ] − J [ X , J Y ] + J 2 [ X , Y ] = 0 . For every open set Ω of V, J. Lehmann-Lejeune studied the Lie Algebra L J ( Ω ) of vector fields X defined on Ω such that the Lie derivative L ( X ) J is equal to zero i.e., for each vector field Y on Ω : [ X , J Y ] = J [ X , Y ] and showed that for every vector field X on Ω such that X ∈ K e r J , we can write X = ∑ [ Y ,…

Foliacions (Matemàtica)Zero (complex analysis)General Physics and AstronomyGeometryLie Àlgebres deManifoldCombinatoricsTransverse planeLie algebraFoliation (geology)Lie derivativeVector fieldFiber bundleGeometry and TopologyMathematical PhysicsMathematics
researchProduct

Poisson-Nijenhuis structures and the Vinogradov bracket

1994

We express the compatibility conditions that a Poisson bivector and a Nijenhuis tensor must fulfil in order to be a Poisson-Nijenhuis structure by means of a graded Lie bracket. This bracket is a generalization of Schouten and Frolicher-Nijenhuis graded Lie brackets defined on multivector fields and on vector valued differential forms respectively.

Schouten–Nijenhuis bracketGraded Lie algebraAlgebraFrölicher–Nijenhuis bracketPoisson bracketAdjoint representation of a Lie algebraNonlinear Sciences::Exactly Solvable and Integrable SystemsMathematics::Quantum AlgebraPoisson manifoldLie bracket of vector fieldsLie derivativeMathematics::Differential GeometryGeometry and TopologyMathematics::Symplectic GeometryAnalysisMathematicsAnnals of Global Analysis and Geometry
researchProduct